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Abstract

The optimization procedure with the greatest power of
convergence is the full-matrix method. This method has
not been utilized to a great extent in macromolecular
re®nement because of the great cost of both calculating
and inverting the `normal' matrix. This paper describes
an algorithm that can calculate this matrix in a relatively
short amount of computer time. The procedure requires
two Fourier transforms, which can be performed with
the fast-Fourier transformation (FFT) algorithm, as well
as a large number of simple function products.

1. Introduction

Least-squares optimization is the procedure whereby
values for the parameters of a model are determined by
minimizing the residual function

f �p� �Pasu

i

W�i��Qo�i� ÿQc�i; p��2: �1�

Qo�i� is the value for observation number i, Qc�i; p� is
the model's prediction for observation i using the set of
model parameters p and W�i� is some weighting func-
tion.

The values of the parameters that produce the best ®t
to the data are found by expanding f �p� into a Taylor
series in the neighborhood of p0, calculating the ®rst
derivative with respect to each parameter and solving
the resulting set of equations where these derivatives are
equal to zero. Solving the resulting equation is the full-
matrix method of minimization:

p � p0 ÿ jd2f �p�=dp2jÿ1
p0
jdf �p�=dpjp0

: �2�
The matrix

jd2f �p�=dp2jp0
�3�

is usually called the `normal' matrix. This matrix can be
huge, having N2 elements, where N is the number of
parameters in the model. For a typical protein
containing 2500 atoms each with four parameters, the
normal matrix contains 10 000 � 10 000 or 100 000 000
elements. A protein such as betagalatosidase (Jacobson
et al., 1994), which contains 130 000 atoms in the

asymmetric unit, with each atom having three par-
ameters, would require a normal matrix with
152 100 000 000 elements. Obviously, the calculation of
such a matrix is a sizable problem.

Because of the prohibitive time requirements, the
re®nement packages most commonly used for macro-
molecular re®nement ± PROLSQ (Hendrickson &
Konnert, 1980), TNT (Tronrud et al., 1987), X-PLOR
(BruÈ nger et al., 1987) and REFMAC (Murshudov et al.,
1997) ± each use methods of minimization that do not
require the complete normal matrix. While the various
methods implemented are computationally ef®cient and,
for poor initial models, can be superior to the full-matrix
method because of their larger radius of convergence,
one would expect that the `®nal' models produced by
these programs could be improved by additional cycles
of re®nement using the full-matrix method.

While SHELXL (Sheldrick & Schneider, 1997) offers
the full-matrix method, it has been applied only to
smaller proteins because of the prohibitive amounts of
computer time required by the calculations for large
macromolecules.

This paper describes a means for calculating the
normal matrix that is much faster than previous
methods. The amount of time required is still signi®cant
and the amount of time required for the inversion (or
approximation thereof) of this matrix is not reduced by
the following method.

2. Derivation

The method used to calculate the ®rst derivatives of the
least-squares residual function in most re®nement
programs uses a short-cut which requires the calculation
of the product of a particular function with an Fo ÿ Fc

difference map (Agarwal, 1978; Agarwal et al., 1981).
Agarwal showed that, given the residual function

f �Pasu

h

W�h��jFo�h�j ÿ jFc�h�j�2; �4�

where

h � hkl; �5�
the gradient function
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@f=@pi � ÿ2
Pasu

h

W�h��jFo�h�j ÿ jFc�h�j�@jFc�h�j=@pi �6�

is equivalent to the expression

@f=@pi � T̂ÿ1�W�h��jFo�h�j ÿ jFc�h�j� exp i'c�h��



ri

T̂ÿ1 ÿ2V

ÿ2�ih

ÿ2�ik

ÿ2�il

ÿs2=4

1=Oi

0BBBBBB@

1CCCCCCAgi�h�

26666664

37777775: �7�

A number of terms must be de®ned. pi is the vector
containing the parameters describing atom i. T̂ÿ1 is
the inverse Fourier transform operator. 
ri

denotes a
convolution evaluated at the point ri, the position of
the atom. V is the volume of the unit cell.
gi�h� � Oi fi�h� exp�ÿ�Bi=4�s2�, where Oi is the atom
occupancy, Bi is its B factor, fi�h� is the scattering factor
for its atom type and s is the resolution of re¯ection h in
AÊ ÿ1.

Whereas (6) requires a sum over all the re¯ections for
each parameter, (7) is composed of two parts. The ®rst of
these is common to all parameters and the second can be
calculated analytically. Because the calculation of the
part of the equation that involves the crystallographic
data is performed only once, the entire calculation is
sped up considerably.

3. The normal matrix

The expression for the second derivative can be trans-
formed in an equivalent fashion. The usual form for the
second derivative (after linearization) is

@2f

@pi@pj

� 2
Xasu

h

W�h� @jFc�h�j
@pi

� �
@jFc�h�j
@pj

� �t

: �8�

The equivalent form is

@2f

@pi@pj

� VT̂ÿ1 W�h�� �



�ri ÿ rj�

T̂ÿ1 gi�h�gj�h�

4�2h2 4�2hk 4�2hl �ihs2=2 ÿ2�ih=Oj

4�2hk 4�2k2 4�2kl �iks2=2 ÿ2�ik=Oj

4�2hl 4�2kl 4�2l2 �ils2=2 ÿ2�il=Oj

ÿ�ihs2=2 ÿ�iks2=2 ÿ�ils2=2 s4=16 ÿs2=�4Oj�
2�ih=Oi 2�ik=Oi 2�ik=Oi ÿs2=�4Oi� 1=�OiOj�

0BBBBBB@

1CCCCCCA

26666664

37777775
ÿ VT̂ÿ1 W�h� exp 2i'c�h�

� � �9�



�ri � rj�

T̂ÿ1 gi�h�gj�h�

4�2h2 4�2hk 4�2hl ÿ�ihs2=2 2�ih=Oj

4�2hk 4�2k2 4�2kl ÿ�iks2=2 2�ik=Oj

4�2hl 4�2kl 4�2l2 ÿ�ils2=2 2�il=Oj

ÿ�ihs2=2 ÿ�iks2=2 ÿ�ils2=2 ÿs4=16 s2=�4Oj�
2�ih=Oi 2�ik=Oi 2�ik=Oi s2=�4Oi� ÿ1=�OiOj�

0BBBBBB@

1CCCCCCA

26666664

37777775:

While this expression appears very complicated, each
component can be calculated quite ef®ciently. Each of
the two terms begins with a Fourier transform which
depends on data common to all the parameters. These
two maps need only be calculated once requiring only
two FFT's in the entire calculation. The second
components in each term are very similar. Most are
identical and those that differ differ only in sign. In
addition, these Fourier transforms can be calculated
analytically (see Appendix A).

The organization of the calculation is quite simple.
First calculate the asymmetric unit of each of the two
maps. The space group of the ®rst map is the same as the
Patterson function while the space group of the second
map is the `squared' space group.² Then, for each pair of
atoms, i and j, one simply evaluates the 25 convolutions
for each term. This results in one block of the normal
matrix.

The blocks can be calculated in any order or not
calculated at all. If the diagonal of the normal matrix is
desired, only the blocks where i � j need be calculated.
A sparse matrix is as easy to calculate.

Since this method has the ®xed overhead of the two
FFTs, it will become less ef®cient when fewer blocks are
needed. There is a break-even point below which it
becomes more ef®cient to use other methods. The new
method, however, is so ef®cient that the break-even
point is smaller than the size of the diagonal of the
matrix, which is the smallest portion of the matrix one
would want to calculate.

A reviewer of this paper noted a similarity between
the method described herein and that published by
Murshudov et al. (1997). Equation (9) can be considered
a specialization of their equations (46) and (47) for the
least-squares residual.

² Take the Hermann±Mauguin symbol for the crystal's space group.
Replace each subscript, i, with 2i �mod N� where N is the multiplicity
of the screw axis. For example, P21 becomes P2 and P32 becomes P31.
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4. Speed comparisons

The usual method for comparing the ef®ciency of two
algorithms is to estimate the rate at which the size of the
computation grows with an increase in the size of the
problem. An algorithm for which the computation time
grows more slowly is better. The rate of growth of the
computation is expressed in `big-oh' notation (Knuth,
1973, pp. 104±107). O�. . .� is usually read as `on the
order of . . .'.

The traditional method for calculating the normal
matrix requires a loop over all re¯ections for each pair
of parameters in the model. In big-oh notation, the
computation increases in size as O�N2n�, where N is the
number of parameters in the model and n is the number
of re¯ections. In the proposed method, the calculation is
segregated into two FFT's (the O for a three dimen-
sional FFT is n ln n=3) followed by a simple calcula-
tion for each pair of parameters (there are N2 pairs).
The speed of the new algorithm is, therefore,
O�N2 � n ln n=3�. When N2 � n ln n=3, as is usually the
case, the larger term dominates and the big-oh is
approximated as O�N2�. The size of the calculation for
the traditional method will increase with the size of the
problem faster than the proposed method by roughly a
factor equal to the number of structure factors.

5. Limitations

The derivation of the optimized form of the normal-
matrix equation involves several assumptions which
limit its application. The ®rst is the assumption that
W�h� obeys the space-group symmetry and does not
depend on the parameter of the model (p). The ®rst part
of this assumption will always be correct. The latter part
will be violated by several weighting schemes including
maximum likelihood (Bricogne, 1993). These types of
target function can be accommodated by repeating the
derivation of the optimized form and deriving different
coef®cients for the two maps.

This method calculates the normal matrix for the
atoms as though the space group were P1. This
assumption requires appropriate modi®cation when
calculating normal-matrix elements involving atoms
occupying special positions in the true space group. If an
atom overlaps a symmetry image of itself, one must use
the chain rule to derive the corrected normal matrix
element.

The derivation further assumes that Friedel's law
holds. This method cannot be used when the diffraction
data contain anomalous scattering. A partition of the
data to �F� � Fÿ� and �F� ÿ Fÿ� would allow the new
method to be used for the averaged structure factors and
most of the parameters, while the normal matrix for the
®t to the Bijvoet differences could be calculated using
the traditional method for the parameters of the
anomalous scatterers alone.

APPENDIX A
Analytical Fourier transforms

The calculation of the normal matrix using (9) requires
the evaluation of a number of analytical Fourier trans-
forms. The results of these transforms are here listed.

In these equations, the scattering factors, f �h�, are
modeled as a sum of Gaussians. This model results in the
equation for gi�h� becoming

gi�h� � Oi exp�ÿ�Bi=4�s2�P3

l�1

al exp�ÿ�bl=4�s2�: �10�

The number of Gaussians summed in this equation is
arbitrarily set to three, which is adequate for data to
1.5 AÊ resolution. It can be increased as required by the
resolution of the diffraction data being ®t.

The matrix G is the metric tensor for the coordinate
system.

T̂ÿ1�4�2hhtgi�h�gj�h��

� OiOj

P3

l�1

P3

m�1

alam�4�=�Bi � Bj � bl � bm��3=2

� �4�2=�Bi � Bj � bl � bm��
� �2Gÿ 4�2=�Bi � Bj � bl � bm�4xGGxt�
� expfÿ�4�2=�Bi � Bj � bl � bm��r2g �11�

T̂ÿ1�s4=16 gi�h�gj�h��

� OiOj

P3

l�1

P3

m�1

alam�4�=�Bi � Bj � bl � bm��3=2

� �1=�Bi � Bj � bl � bm��2
� ÿ�4�2=�Bi � Bj � bl � bm�r2�2
ÿ 5�4�2=�Bi � Bj � bl � bm��r2 � �15=4��
� expfÿ�4�2=�Bi � Bj � bl � bm��r2g �12�

T̂ÿ1�gi�h�gj�h�=�OiOj��

�P3

l�1

P3

m�1

alam�4�=�Bi � Bj � bl � bm��3=2

� expfÿ�4�2=�Bi � Bj � bl � bm��r2g �13�

T̂ÿ1��ihs2=2 gi�h�gj�h��

� OiOj

P3

l�1

P3

m�1

alam�4�=�Bi � Bj � bl � bm��3=2

� �1=�Bi � Bj � bl � bm��
� �4�2=�Bi � Bj � bl � bm��
� f5=2ÿ �4�2=�Bi � Bj � bl � bm��r2g
� 2Gx expf�ÿ4�2=�Bi � Bj � bl � bm��r2g �14�
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T̂ÿ1�2�ih=Oi gi�h�gj�h��

� ÿOj

P3

l�1

P3

m�1

alam�4�=�Bi � Bj � bl � bm��3=2

� �4�2=�Bi � Bj � bl � bm��
� 2Gx expfÿ�4�2=�Bi � Bj � bl � bm��r2g �15�

T̂ÿ1�ÿs2=�4Oi�gi�h�gj�h��

� Oj

P3

l�1

P3

m�1

alam�4�=�Bi � Bj � bl � bm��3=2

� �1=�Bi � Bj � bl � bm��
� fÿ3=2� �4�2=�Bi � Bj � bl � bm��r2g
� expfÿ�4�2=�Bi � Bj � bl � bm��r2g: �16�
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